Preliminary communication

The reactions of tin(II) halides with $[(\pi-\text{Ring})\text{Fe}(\text{CO})_2]_2$ complexes (Ring = C_5H_5 , MeC₅H₄, or C₉H₇)

P. HACKETT and A.R. MANNING*

Department of Chemistry, University College, Belfield, Dublin 4 (Ireland) (Received November 8th, 1971)

Bonati and Wilkinson showed that tin(II) chloride undergoes an oxidative addition with $[(\pi-C_5H_5)Fe(CO)_2]_2$ to give $[(\pi-C_5H_5)Fe(CO)_2]_2SnCl_2^1$. Since then many related reactions have been described which give complexes of this type as the sole product².

We now report that $[(\pi-\text{Ring})\text{Fe}(\text{CO})_2]_2$ derivatives $(\text{Ring} = C_5\text{H}_5, \text{MeC}_5\text{H}_4, \text{or} C_9\text{H}_7)$ react with SnX_2 (X = F, Cl, Br, or I) to give $(\pi-\text{Ring})\text{Fe}(\text{CO})_2\text{X}$, $(\pi-\text{Ring})\text{Fe}(\text{CO})_2$ -SnX₃, $[(\pi-\text{Ring})\text{Fe}(\text{CO})_2]_2\text{SnX}_2$, or $[(\pi-\text{Ring})\text{Fe}(\text{CO})_2]_3$ SnX depending on X, the π -bonded ring, the mole ratio of reactants, and the reaction conditions.

For example, when $\text{SnBr}_2 \cdot 2\text{H}_2\text{O}$ and $[(\pi-C_5\text{H}_5)\text{Fe}(\text{CO})_2]_2$ (I) (mole ratio = 10/1) are heated in methanol, tetrahydrofuran, or benzene, (I) is consumed rapidly to give $(\pi-C_5\text{H}_5)\text{Fe}(\text{CO})_2\text{Br}$ (II) and $(\pi-C_5\text{H}_5)\text{Fe}(\text{CO})_2\text{SnBr}_3$ (III) in comparable amounts. These are the only products, and both have been isolated. During longer reaction times (II) is converted to (III) so that this is the final product (yield > 70%).

When $\operatorname{SnBr_2} \cdot 2H_2 O$ and (I) are used in equimolar quantities, the principal final product is $[(\pi - C_5 H_5)Fe(CO)_2]_2 \operatorname{SnBr_2}$ (IV). It appears to arise from the reaction (I) + (III) \rightarrow (II) + (IV) rather than by a direct insertion of $\operatorname{SnBr_2}$ into the Fe-Fe bond of (I). This type of reaction has been used to prepare mixed complexes *e.g.* $[(\pi - C_5 H_5)Fe(CO)_2] = [(\pi - \operatorname{MeC}_5 H_4)Fe(CO)_2] \operatorname{SnBr_2}$ (V), and $[(\pi - C_5 H_5)Fe(CO)_2] [(\pi - C_5 H_5)Mo(CO)_3] \operatorname{SnCl_2}$ (VI)³, and although rather slow in the three solvents quoted, it is much more rapid in refluxing xylene or light petroleum (100-120°). These solvents have the added advantage that at ca. 120° the second product, *e.g.* (II), decomposes.

Similar results have been obtained for the methylcyclopentadienyl and indenyl complexes, and for reactions with tin(II) iodide although reaction rates differ. However with SnCl₂ or SnF₂, (I) yields little or no mono-iron compounds comparable to (II) or (III). Even with large excesses of these tin(II) salts, $[(\pi-C_5H_5)Fe(CO)_2]_2SnCl_2$ (VII) or $[(\pi-C_5H_5)Fe(CO)_2]_2SnF_2$ (VIII) are the only important products (yields 90 and 80% respectively).

If an excess of the dimer, *e.g.* (I), is used, a further reaction occurs to give $[(\pi-C_5H_5)Fe(CO)_2]_3SnCl$ (IX) or its fluoro analogue (X). It is slow, but takes place more rapidly in xylene. This type of reaction may be used to prepare mixed complexes such as $[(\pi-C_5H_5)Fe(CO)_2]_2[(\pi-MeC_5H_4)Fe(CO)_2]SnCl$ (XI), and $[(\pi-C_5H_5)Fe(CO)_2]_-[(\pi-MeC_5H_4)Fe(CO)_2]Bu_3PCo(CO)_3]SnCl$ (XII).

J. Organometal, Chem., 34 (1972)

Compound	M.p. ^a (°C)	Absorption l	bands ^b						
NN N	181-182 (d) 122-125	1955(2.6)		1975(5.3) 1972(5.9)		1999(5.5)		2025(10)	
	168–169 175–177	1954(2.9)		1974(5.4)		2000(5.4) 1000(7.5)		2024(10)	
N.	154-156	1916(4.6)	1921(sh)	1946(3.1)	1960(2.5)	1976(4.5)	1982(sh)	2024(7.4)	2028(10)
IX	Dec. 220	1933(sh)	1937(3.5)	1949(4.6)	1973(4.2)	1985(10)	2003(1.8)	2011(2.9)	
×	228–229 (d)	1930(sh)	1934(4,1)	1945(5.3)	1976(3.9)	1983(10)	2001(1.7)	2010(2.3)	
XI	156-159	1933(sh)	1938(3,3)	1948(4.7)	1974(4.3)	1986(10)	2003(2.4)	2010(3.1)	
XII	106~108	1928(3.8)	1946(10)	1951(sh)	1980(6.0)	1991(9.4)	2016(3.8)		
a(d) = melts heights in p	with decomposi arentheses.	tion; Dec. = de	composes wit	hout melting.	^b CS ₂ solutio	n; peak positi	ons (cm ⁻¹) wit	h relative peal	

Ē £ Š 2 Ť TABLE 1

J. Organometal. Chem., 34 (1972)

These reactions often give high yields of the products, and provide a useful synthetic pathway to polymetallic transition metal derivatives of tin, and, perhaps, of other non-transition elements. Many compounds are new e.g. (VIII)-(XII), and are probably difficult to prepare in any other way. Melting points and infrared spectra of some of the complexes are given in Table 1.

REFERENCES

- 1 F. Bonati and G. Wilkinson, J. Chem. Soc., (1964) 179.
- J.F. Young, Advan. Inorg. Radiochem., 11 (1968) 91.
 F. Bonati, S. Cenini and R. Ugo, J. Chem. Soc. (A), (1967) 932.

J. Organometal, Chem., 34 (1972)